Интернет. Безопасность. Windows. Программы. Компьютеры

Назначение ооп. Принципы ооп

Основные принципы и этапы объектно-ориентированного

программирования

В теории программирования ООП определяется как технология создания сложного программного обеспечения, которая основана на представлении программы в виде совокупности объектов , каждый из которых является экземпляром определенного типа (класса ), а классы образуют иерархию с

наследованием свойств .

Взаимодействие программных объектов в такой системе осуществляется путем передачи сообщений .

П р и м е ч а н и е. Такое представление программы впервые было использовано в языке имитационного моделирования сложных систем Simula, появившемся еще в 60-х годах.

Естественный для языков моделирования способ представления программы получил развитие в другом специализированном языке моделирования - языке Smalltalk (70-е годы), а затем был

Страница 2 из 51

Основные принципы ООП

использован в новых версиях универсальных языков программирования, таких как Pascal, С++,

Основное достоинство ООП - сокращение количества межмодульных вызовов и уменьшение объемов информации, передаваемой между модулями,

по сравнению с модульным программированием. Это достигается за счет более полной локализации данных и интегрирования их с подпрограммами обработки,

что позволяет вести практически независимую разработку отдельных частей

(объектов) программы.

Кроме этого, объектный подход предлагает новые технологические средства разработки, такие как наследование, полиморфизм, композиция, наполнение ,

позволяющие конструировать сложные объекты из более простых. В результате существенно увеличивается показатель повторного использования кодов,

появляется возможность создания библиотек объектов для различных применений, и разработчикам предоставляются дополнительные возможности создания систем повышенной сложности.

Основной недостаток ООП - некоторое снижение быстродействия за счет более сложной организации программной системы.

В основу ООП положены следующие п р и н ц и п ы : абстрагирование,

ограничение доступа, модульность, иерархичность, типизация, параллелизм,

устойчивость.

Рассмотрим, что представляет собой каждый принцип.

А б с т р а г и р о в а н и е - процесс выделения абстракций в предметной области задачи. Абстракция - совокупность существенных характеристик некоторого объекта, которые отличают его от всех других видов объектов и,

таким образом, четко определяют особенности данного объекта с точки зрения дальнейшего рассмотрения и анализа. В соответствии с определением применяемая абстракция реального предмета существенно зависит от решаемой задачи: в одном случае нас будет интересовать форма предмета, в другом вес, в

третьем - материалы, из которых он сделан, в четвертом - закон движения

Страница 3 из 51

Основные принципы ООП

предмета и т.д. Современный уровень абстракции предполагает объединение всех свойств абстракции (как касающихся состояния анализируемого объекта,

так и определяющих его поведение) в единую программную единицу некий

абстрактный тип (класс).

О г р а н и ч е н и е д о с т у п а - сокрытие отдельных элементов реализации абстракции, не затрагивающих существенных характеристик ее как целого.

Необходимость ограничения доступа предполагает разграничение двух частей в описании абстракции:

интерфейс - совокупность доступных извне элементов реализации абстракции (основные характеристики состояния и поведения);

реализация - совокупность недоступных извне элементов реализации абстракции (внутренняя организация абстракции и механизмы реализации ее поведения).

Ограничение доступа в ООП позволяет разработчику:

выполнять конструирование системы поэтапно, не отвлекаясь на особенности реализации используемых абстракций;

легко модифицировать реализацию отдельных объектов, что в правильно организованной системе не потребует изменения других объектов.

Сочетание объединения всех свойств предмета (составляющих его состояния и поведения) в единую абстракцию и ограничения доступа к реализации этих свойств получило название инкапсуляции.

М о д у л ь н о с т ь - принцип разработки программной системы,

предполагающий реализацию ее в виде отдельных частей (модулей). При выполнении декомпозиции системы на модули желательно объединять логически связанные части, по возможности обеспечивая сокращение количества внешних связей между модулями. Принцип унаследован от

Страница 4 из 51

Основные принципы ООП

модульного программирования, следование ему упрощает проектирование и

отладку программы.

И е р а р х и я - ранжированная или упорядоченная система абстракций.

Принцип иерархичности предполагает использование иерархий при разработке программных систем.

В ООП используются два вида иерархии.

Иерархия «целое/часть» - показывает, что некоторые абстракции включены

в рассматриваемую абстракцию как ее части, например, лампа состоит из цоколя, нити накаливания и колбы. Этот вариант иерархии используется в процессе разбиения системы на разных этапах проектирования (на логическом уровне - при декомпозиции предметной области на объекты, на физическом уровне - при декомпозиции системы на модули и при выделении отдельных процессов в мультипроцессной системе).

Иерархия «общее/частное» - показывает, что некоторая абстракция является частным случаем другой абстракции, например, « обеденный стол -

конкретный вид стола», а « столы - конкретный вид мебели». Используется при

разработке структуры классов, когда сложные классы строятся на базе более простых путем добавления к ним новых характеристик и, возможно, уточнения имеющихся.

Один из важнейших механизмов ООП - наследование свойств в иерархии общее/частное. Наследование - такое соотношение между абстракциями, когда одна из них использует структурную или функциональную часть другой или нескольких других абстракций (соответственно простое и множественное

наследование).

Т и п и з а ц и я - ограничение, накладываемое на свойства объектов и

препятствующее взаимозаменяемости абстракций различных типов (или сильно сужающее возможность такой замены). В языках с жесткой типизацией для каждого программного объекта (переменной, подпрограммы, параметра и т. д.)

объявляется тип, который определяет множество операций над

Страница 5 из 51

Основные принципы ООП

соответствующим программным объектом. Рассматриваемые далее языки программирования на основе Паскаля используют строгую, а на основе С -

среднюю степень типизации.

Использование принципа типизации обеспечивает:

раннее обнаружение ошибок, связанных с недопустимыми операциями над программными объектами (ошибки обнаруживаются на этапе компиляции программы при проверке допустимости выполнения данной операции над программным объектом);

упрощение документирования;

возможность генерации более эффективного кода.

Тип может связываться с программным объектом статически (тип объекта определен на этапе компиляции - раннее связывание) и динамически (тип объекта определяется только во время выполнения программы - позднее связывание). Реализация позднего связывания в языке программирования позволяет создавать переменные - указатели на объекты, принадлежащие различным классам (полиморфные объекты), что существенно расширяет возможности языка.

П а р а л л е л и з м - свойство нескольких абстракций одновременно находиться в активном состоянии, т.е. выполнять некоторые операции.

Существует целый ряд задач, решение которых требует одновременного выполнения некоторых последовательностей действий. К таким задачам,

например, относятся задачи автоматического управления несколькими процессами.

Реальный параллелизм достигается только при реализации задач такого типа на многопроцессорных системах, когда имеется возможность выполнения каждого процесса отдельным процессором. Системы с одним процессором имитируют параллелизм за счет разделения времени процессора между задачами управления различными процессами. В зависимости от типа используемой операционной системы (одноили мультипрограммной)

Страница 6 из 51

Основные принципы ООП

разделение времени может выполняться либо разрабатываемой системой (как в

MS DOS), либо используемой ОС (как в системах Windows).

У с т о й ч и в о с т ь - свойство абстракции существовать во времени независимо от процесса, породившего данный программный объект, и/или в пространстве, перемещаясь из адресного пространства, в котором он был создан.

Различают:

∙ временные объекты, хранящие промежуточные результаты некоторых действий, например вычислений;

∙ локальные объекты, существующие внутри подпрограмм, время жизни которых исчисляется от вызова подпрограммы до ее завершения;

∙ глобальные объекты, существующие пока программа загружена в память;

∙ сохраняемые объекты, данные которых хранятся в файлах внешней памяти между сеансами работы программы.

Все указанные выше принципы в той или иной степени реализованы в различных версиях объектно-ориентированных языков.

Объектно-ориентированные языки программирования. Язык считается объектно-ориентированным, если в нем реализованы первые четыре из рассмотренных семи принципов.

Особое место занимают объектные модели Delphi и C++Builder. Эти модели обобщают опыт ООП для MS DOS и включают некоторые новые средства,

обеспечивающие эффективное создание более сложных систем. На базе этих моделей созданы визуальные среды для разработки приложений Windows.

Сложность программирования под Windows удалось существенно

снизить за счет создания специальных библиотек объектов, « спрятавших» многие элементы техники программирования.

Страница 7 из 51

Основные принципы ООП

Этапы разработки программных систем с использованием ООП.

Процесс разработки программного обеспечения с использованием ООП включает четыре этапа: анализ, проектирование, эволюция, модификация.

Рассмотрим эти этапы.

А н а л и з . Цель анализа - максимально полное описание задачи. На этом этапе выполняется анализ предметной области задачи, объектная декомпозиция разрабатываемой системы и определяются важнейшие особенности поведения объектов (описание абстракций). По результатам анализа разрабатывается структурная схема программного продукта, на которой показываются основные объекты и сообщения, передаваемые между ними, а также выполняется описание абстракций.

Проект ирование . Различают :

логическое проектирование, при котором принимаемые решения практически не зависят от условий эксплуатации (операционной системы и используемого оборудования);

физическое проектирование, при котором приходится принимать во внимание указанные факторы.

Логическое проектирование заключается в разработке структуры классов:

определяются поля для хранения составляющих состояния объектов и алгоритмы методов, реализующих аспекты поведения объектов. При этом используются рассмотренные выше приемы разработки классов (наследование,

композиция, наполнение, полиморфизм и т.д.). Результатом является иерархия или диаграмма классов, отражающие взаимосвязь классов, и описание классов.

Физическое проектирование включает объединение описаний классов в модули, выбор схемы их подключения (статическая или динамическая компоновка), определение способов взаимодействия с оборудованием, с

операционной системой и/или другим программным обеспечением (например,

базами данных, сетевыми программами), обеспечение синхронизации процессов для систем параллельной обработки и т.д.

Страница 8 из 51

Основные принципы ООП

Э в о л ю ц и я с и с т е м ы. Это процесс поэтапной реализации и

подключения классов к проекту. Процесс начинается с создания основной программы или проекта будущего программного продукта. Затем реализуются и подключаются классы, так чтобы создать грубый, но, по возможности,

работающий прототип будущей системы. Он тестируется и отлаживается.

Например, таким прототипом может служить система, включающая реализацию основного интерфейса программного продукта (передача сообщений в отсутствующую пока часть системы не выполняется). В результате мы получаем работоспособный прототип продукта, который может быть, например, показан заказчику для уточнения требований. Затем к системе подключается следующая группа классов, например, связанная с реализацией некоторого пункта меню.

Полученный вариант также тестируется и отлаживается, и так далее, до реализации всех возможностей системы.

Использование поэтапной реализации существенно упрощает тестирование и отладку программного продукта.

Модификация. Это процесс добавления новых функциональных возможностей или изменение существующих свойств системы. Как правило,

изменения затрагивают реализацию класса, оставляя без изменения его интерфейс, что при использовании ООП обычно обходится без особых неприятностей, так как процесс изменений затрагивает локальную область.

Изменение интерфейса - также не очень сложная задача, но ее решение может повлечь за собой необходимость согласования процессов взаимодействия объектов, что потребует изменений в других классах программы. Однако сокращение количества параметров в интерфейсной части по сравнению с модульным программированием существенно облегчает и этот процесс.

Простота модификации позволяет сравнительно легко адаптировать программные системы к изменяющимся условиям эксплуатации, что увеличивает время жизни систем, на разработку которых затрачиваются огромные временные и материальные ресурсы.

Страница 9 из 51

Основные принципы ООП

Особенностью ООП является то, что объект или группа объектов могут разрабатываться отдельно, и, следовательно, их проектирование может находиться на различных этапах. Например, интерфейсные классы уже реализованы, а структура классов предметной области еще только уточняется.

Обычно проектирование начинается, когда какой-либо фрагмент предметной области достаточно полно описан в процессе анализа.

Рассмотрение основных приемов объектного подхода начнем с объектной декомпозиции.

Объектная декомпозиция

Как уже упоминалось выше, при использовании технологии ООП решение представляется в виде результата взаимодействия отдельных функциональных элементов некоторой системы, имитирующей процессы,

происходящие в предметной области поставленной задачи.

В такой системе каждый функциональный элемент, получив некоторое входное воздействие (называемое сообщением) в процессе решения задачи,

выполняет заранее определенные действия (например, может изменить собственное состояние, выполнить некоторые вычисления, нарисовать окно или график и в свою очередь воздействовать на другие элементы). Процессом решения задачи управляет последовательность сообщений. Передавая эти сообщения от элемента к элементу, система выполняет необходимые действия.

Функциональные элементы системы, параметры и поведение которой определяются условием задачи, обладающие самостоятельным поведением

(т.е. « умеющие» выполнять некоторые действия, зависящие от полученных сообщений и состояния элемента), получили название объектов.

Процесс представления предметной области задачи в виде совокупности объектов, обменивающихся сообщениями, называется объектной декомпозицией.

Страница 10 из 51

Основные принципы ООП

Для того чтобы понять, о каких объектах и сообщениях идет речь при выполнении объектной декомпозиции в каждом конкретном случае, следует вспомнить, что первоначально объектный подход был предложен для разработки имитационных моделей поведения сложных систем. Набор объектов таких систем обычно определяется при анализе моделируемых процессов.

Пример. Объектная декомпозиция (имитационная модель

бензоколонки). Пусть нас интересует зависимость длины очереди к бензоколонке от количества заправочных мест, параметров обслуживания каждого заправочного места и интенсивности поступления заявок на заправку топливом (рассматриваем топливо одного типа).

Задачи такого вида обычно решаются с использованием имитационных моделей. Модель программно имитирует реальный процесс с заданными параметрами, параллельно фиксируя его характеристики. Многократно повторяя процесс имитации с различными значениями параметров обслуживания или поступления заявок, исследователь получает конкретные значения характеристик, по которым строятся графики анализируемых зависимостей.

Процесс работы бензоколонки с тремя заправочными местами можно представить в виде диаграммы.

по существу пользовались парадигмой директивного программирования - целью было создание кода, воздействующего должным образом на данные. Этот подход хорош при решении небольших задач, но порождает множество трудноразрешимых проблем при попытке создания больших программных систем .

Одной из альтернатив директивному программированию является объектно-ориентированное программирование , которое действительно помогает справиться с нелинейно растущей сложностью программ при увеличении их объема. Не следует, однако, делать вывод , что использование парадигмы объектно-ориентированного программирования гарантирует успешное решение всех проблем.

Для того чтобы стать профессионалом в программировании, необходимы талант, способность к творчеству, интеллект , знания, логика, умение строить и использовать абстракции и, самое главное, опыт .

В этом параграфе мы продолжим знакомство с базисными концепциями объектно-ориентированного программирования, начатое еще в первой главе книги. Сначала будут обсуждены общие для различных языков программирования понятия ООП , а затем - их реализация в языке Java .

Следует знать, что курс объектно-ориентированного программирования читается студентам-старшекурсникам в течение целого семестра, и поэтому материал, изложенный ниже, представляет собой лишь самое начальное введение в мир ООП . Значительно более полное изложение многих вопросов, связанных с объектно-ориентированными дизайном, проектированием и программированием, содержится в книге , а в третьей главе книги можно найти очень ясное описание всех объектно-ориентированных аспектов языка Java .

Основные концепции ООП

Объектно-ориентированное программирование или ООП (object-oriented programming) - методология программирования , основанная на представлении программы в виде совокупности объектов , каждый из которых является реализацией определенного типа , использующая механизм пересылки сообщений и классы , организованные в иерархию наследования .

Центральный элемент ООП - абстракция . Данные с помощью абстракции преобразуются в объекты, а последовательность обработки этих данных превращается в набор сообщений, передаваемых между этими объектами. Каждый из объектов имеет свое собственное уникальное поведение. С объектами можно обращаться как с конкретными сущностями, которые реагируют на сообщения, приказывающие им выполнить какие-то действия.

ООП характеризуется следующими принципами ( по Алану Кею):

  • все является объектом ;
  • вычисления осуществляются путем взаимодействия (обмена данными) между объектами, при котором один объект требует, чтобы другой объект выполнил некоторое действие; объекты взаимодействуют, посылая и получая сообщения ; сообщение - это запрос на выполнение действия, дополненный набором аргументов, которые могут понадобиться при выполнении действия;
  • каждый объект имеет независимую память , которая состоит из других объектов ;
  • каждый объект является представителем класса , который выражает общие свойства объектов данного типа ;
  • в классе задается функциональность (поведение объекта); тем самым все объекты, которые являются экземплярами одного класса, могут выполнять одни и те же действия;
  • классы организованы в единую древовидную структуру с общим корнем, называемую иерархией наследования ; память и поведение, связанное с экземплярами определенного класса, автоматически доступны любому классу, расположенному ниже в иерархическом дереве.

Определение 10.1 . Абстрагирование (abstraction) - метод решения задачи, при котором объекты разного рода объединяются общим понятием (концепцией), а затем сгруппированные сущности рассматриваются как элементы единой категории.

Абстрагирование позволяет отделить логический смысл фрагмента программы от проблемы его реализации, разделив внешнее описание ( интерфейс ) объекта и его внутреннюю организацию (реализацию).

Определение 10.2 . Инкапсуляция (encapsulation) - техника, при которой несущественная с точки зрения интерфейса объекта информация прячется внутри него.

Определение 10.3 . Наследование (inheritance) - свойство объектов, посредством которого экземпляры класса получают доступ к данным и методам классов-предков без их повторного определения.

Наследование позволяет различным типам данных совместно использовать один и тот же код, приводя к уменьшению его размера и повышению функциональности.

Определение 10.4 .

Общая информация

ООП - это стиль программирования, появившийся в 80 годах 20 века. В отличие от процедурных языков, где данные и инструкции по их обработке существуют отдельно, в объектно-ориентированном программировании эта информация объединяется в единую сущность.

Основные принципы ООП

Наследование

Второй принцип ООП - наследование - это возможность одного класса использовать методы другого без повторения их фактической реализации. Наследование позволяет избавиться от избыточности исходного кода.

Полиморфизм

Еще один принцип ООП - полиморфизм. Его использование означает, что для манипуляции с объектами разной степени сложности можно создать один интерфейс, который будет по-разному реагировать на события и одновременно правильно реализовывать поставленные задачи.

Языки ООП

Принципы ООП используются в таких наиболее популярных языках программирования, как C++ и Java, на которых разработана значительная часть программ и приложений. Есть и менее используемые языки ООП - это Delphi, Object Pascal, Ruby и многие другие.

Критика ООП

Несмотря на в основном позитивные высказывания в сторону данной методологии, нередко принципы ООП подвергаются и критике. Как и у у ООП есть свои недостатки.

Во-первых, сложность перехода. Чтобы понять принципы ООП, потребуется достаточно много времени, тем более людям, вплотную работающим только с процедурными языками программирования.

Во-вторых, недостатком является более сложная документация, так как потребуется не только описывать классы и объекты, но и конкретные случаи их реализации.

В-третьих, излишняя универсальность методов может привести к тому, что исходный код и разрабатываемые программы будут перегружены невостребованными в данном конкретном случае функциями и возможностями. Кроме того, отмечают неэффективность с точки зрения распределения памяти. Однако вне зависимости от мнения окружающих число программистов ООП постоянно растет, а сами языки стремительно развиваются.

Наверное, в половине вакансий(если не больше), требуется знание и понимание ООП. Да, эта методология, однозначно, покорила многих программистов! Обычно понимание ООП приходит с опытом, поскольку годных и доступно изложенных материалов на данный счет практически нет. А если даже и есть, то далеко не факт, что на них наткнутся читатели. Надеюсь, у меня получится объяснить принципы этой замечательной методологии, как говорится, на пальцах.

Итак, уже в начале статьи я уже упомянул такой термин "методология". Применительно к программированию этот термин подразумевает наличие какого-либо набора способов организации кода, методов его написания, придерживаясь которых, программист сможет писать вполне годные программы.

ООП (или объектно-ориентированное программирование) представляет собой способ организации кода программы, когда основными строительными блоками программы являются объекты и классы, а логика работы программы построена на их взаимодействии.


Об объектах и классах

Класс - это такая структура данных, которую может формировать сам программист. В терминах ООП, класс состоит из полей (по-простому - переменных) и методов (по-простому - функций). И, как выяснилось, сочетание данных и функций работы над ними в одной структуре дает невообразимую мощь. Объект - это конкретный экземпляр класса. Придерживаясь аналогии класса со структурой данных, объект - это конкретная структура данных, у которой полям присвоены какие-то значения. Поясню на примере:

Допустим, нам нужно написать программу, рассчитывающую периметр и площадь треугольника, который задан двумя сторонами и углом между ними. Для написания такой программы используя ООП, нам необходимо будет создать класс (то есть структуру) Треугольник. Класс Треугольник будет хранить три поля (три переменные): сторона А, сторона Б, угол между ними; и два метода (две функции): посчитать периметр, посчитать площадь. Данным классом мы можем описать любой треугольник и вычислить периметр и площадь. Так вот, конкретный треугольник с конкретными сторонами и углом между ними будет называться экземпляром класса Треугольник. Таким образом класс - это шаблон, а экземпляр - конкретная реализация шаблона. А вот уже экземпляры являются объектами, то есть конкретными элементами, хранящими конкретные значения.

Одним из самых распространенных объектно-ориентированных языков программирования является язык java. Там без использования объектов просто не обойтись. Вот как будет выглядеть код класса, описывающего треугольник на этом языке:

/** * Класс Треугольник. */ class Triangle { /** * Специальный метод, называемый конструктор класса. * Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180); return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } }

Если мы внутрь класса добавим следующий код:

/** * Именно в этом месте запускается программа */ public static void main(String args) { //Значения 5, 17, 35 попадают в конструктор класса Triangle Triangle triangle1 = new Triangle(5, 17, 35); System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter()); //Значения 6, 8, 60 попадают в конструктор класса Triangle Triangle triangle2 = new Triangle(6, 8, 60); System.out.println("Площадь треугольника1: "+triangle2.getSquare()); System.out.println("Периметр треугольника1: "+triangle2.getPerimeter()); }

то программу уже можно будет запускать на выполнение. Это особенность языка java. Если в классе есть такой метод

Public static void main(String args)

то этот класс можно выполнять. Разберем код подробнее. Начнем со строки

Triangle triangle1 = new Triangle(5, 17, 35);

Здесь мы создаем экземпляр triangle1 класса Triangle и тут же задаем ему параметры сторон и угла между ними. При этом, вызывается специальный метод, называемый конструктор и заполняет поля объекта переданными значениями в конструктор. Ну, а строки

System.out.println("Площадь треугольника1: "+triangle1.getSquare()); System.out.println("Периметр треугольника1: "+triangle1.getPerimeter());

выводят рассчитанные площадь треугольника и его периметр в консоль.

Аналогично все происходит и для второго экземпляра класса Triangle .

Понимание сути классов и конструирования конкретных объектов - это уверенный первый шаг к пониманию методологии ООП.

Еще раз, самое важное:

ООП - это способ организации кода программы;

Класс - это пользовательская структура данных, которая воедино объединяет данные и функции для работы с ними(поля класса и методы класса);

Объект - это конкретный экземпляр класса, полям которого заданы конкретные значения.


Три волшебных слова

ООП включает три ключевых подхода: наследование, инкапсуляцию и полиморфизм. Для начала, приведу определения из wikipedia :

Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Некоторые языки (например, С++) отождествляют инкапсуляцию с сокрытием, но большинство (Smalltalk, Eiffel, OCaml) различают эти понятия.

Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом.

Полиморфизм - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.

Понять, что же все эти определения означают на деле достаточно сложно. В специализированных книгах, раскрывающих данную тему на каждое определение, зачастую, отводится целая глава, но, как минимум, абзац. Хотя, сути того, что нужно понять и отпечатать навсегда в своем мозге программиста совсем немного.
А примером для разбора нам будут служить фигуры на плоскости. Из школьной геометрии мы знаем, что у всех фигур, описанных на плоскости, можно рассчитать периметр и площадь. Например, для точки оба параметра равны нулю. Для отрезка мы можем вычислить лишь периметр. А для квадрата, прямоугольника или треугольника - и то, и другое. Сейчас же мы опишем эту задачу в терминах ООП. Также не лишним будет уловить цепь рассуждений, которые выливаются в иерархию классов, которая, в свою очередь, воплощается в работающий код. Поехали:


Итак, точка - это самая малая геометрическая фигура, которая является основой всех прочих построений (фигур). Поэтому именно точка выбрана в качестве базового родительского класса. Напишем класс точки на java:

/** * Класс точки. Базовый класс */ class Point { /** * Пустой конструктор */ Point() {} /** * Метод класса, который рассчитывает площадь фигуры */ double getSquare() { return 0; } /** * Метод класса, который рассчитывает периметр фигуры */ double getPerimeter() { return 0; } /** * Метод класса, возвращающий описание фигуры */ String getDescription() { return "Точка"; } }

У получившегося класса Point пустой конструктор, поскольку в данном примере мы работаем без конкретных координат, а оперируем только параметрами значениями сторон. Так как у точки нет никаких сторон, то и передавать ей никаких параметров не надо. Также заметим, что класс имеет методы Point::getSquare() и Point::getPerimeter() для расчета площади и периметра, оба возвращают 0. Для точки оно и логично.


Поскольку у нас точка является основой всех прочих фигур, то и классы этих прочих фигур мы наследуем от класса Point . Опишем класс отрезка, наследуемого от класса точки:

/** * Класс Отрезок */ class LineSegment extends Point { LineSegment(double segmentLength) { this.segmentLength = segmentLength; } double segmentLength; // Длина отрезка /** * Переопределенный метод класса, который рассчитывает площадь отрезка */ double getSquare() { return 0; } /** * Переопределенный метод класса, который рассчитывает периметр отрезка */ double getPerimeter() { return this.segmentLength; } String getDescription() { return "Отрезок длиной: " + this.segmentLength; } }

Class LineSegment extends Point

означает, что класс LineSegment наследуется от класса Point . Методы LineSegment::getSquare() и LineSegment::getPerimeter() переопределяют соответствующие методы базового класса. Площадь отрезка всегда равняется нулю, а площадь периметра равняется длине этого отрезка.

Теперь, подобно классу отрезка, опишем класс треугольника(который также наследуется от класса точки):

/** * Класс Треугольник. */ class Triangle extends Point { /** * Конструктор класса. Принимает на вход три параметра: * длина стороны А, длина стороны Б, * угол между этими сторонами(в градусах) */ Triangle(double sideA, double sideB, double angleAB) { this.sideA = sideA; this.sideB = sideB; this.angleAB = angleAB; } double sideA; //Поле класса, хранит значение стороны А в описываемом треугольнике double sideB; //Поле класса, хранит значение стороны Б в описываемом треугольнике double angleAB; //Поле класса, хранит угла(в градусах) между двумя сторонами в описываемом треугольнике /** * Метод класса, который рассчитывает площадь треугольника */ double getSquare() { double square = (this.sideA * this.sideB * Math.sin(this.angleAB * Math.PI / 180))/2; return square; } /** * Метод класса, который рассчитывает периметр треугольника */ double getPerimeter() { double sideC = Math.sqrt(Math.pow(this.sideA, 2) + Math.pow(this.sideB, 2) - 2 * this.sideA * this.sideB * Math.cos(this.angleAB * Math.PI / 180)); double perimeter = this.sideA + this.sideB + sideC; return perimeter; } String getDescription() { return "Треугольник со сторонами: " + this.sideA + ", " + this.sideB + " и углом между ними: " + this.angleAB; } }

Тут нет ничего нового. Также, методы Triangle::getSquare() и Triangle::getPerimeter() переопределяют соответствующие методы базового класса.
Ну а теперь, собственно, тот самый код, который показывает волшебство полиморифзма и раскрывает мощь ООП:

Class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Мы создали массив объектов класса Point , а поскольку классы LineSegment и Triangle наследуются от класса Point , то и их мы можем помещать в этот массив. Получается, каждую фигуру, которая есть в массиве figures мы можем рассматривать как объект класса Point . В этом и заключается полиморфизм: неизвестно, к какому именно классу принадлежат находящиеся в массиве figures объекты, но поскольку все объекты внутри этого массива принадлежат одному базовому классу Point , то все методы, которые применимы к классу Point также и применимы к его классам-наследникам.


Теперь о инкапсуляции. То, что мы поместили в одном классе параметры фигуры и методы расчета площади и периметра - это и есть инкапсуляция, мы инкапсулировали фигуры в отдельные классы. То, что у нас для расчета периметра используется специальный метод в классе - это и есть инкапсуляцию, мы инкапсулировали расчет периметра в метод getPerimiter() . Иначе говоря, инкапсуляция - это сокрытие реализции (пожалуй, самое короткое, и в то же время емкое определением инкапсуляции).


Полный код примера:

Import java.util.ArrayList; class Main { /** * Именно в этом месте запускается программа */ public static void main(String args) { //ArrayList - Это специальная структура данных в java, // позволяющая хранить объекты определенного типа в массиве. ArrayList figures = new ArrayList(); //добавляем три разных объекта в массив figures figures.add(new Point()); figures.add(new LineSegment(133)); figures.add(new Triangle(10, 17, 55)); for (int i = 0; i

Концепция объектно-ориентированного программирования (ООП) появилась более сорока лет назад, как развитие идей процедурного программирования. Идеология процедурного программирования, на мой взгляд, ничего особенного собой не представляет: все программы представлены набором процедур и функций, в то время как сами процедуры и функции – это последовательности операторов, выполняя которые модифицирует значения переменных в памяти. Основная программа в процедурном программировании также является процедурой (функцией), в теле которой могут быть вызовы других процедур и функций – подпрограмм. Суть процедурного программирования проста: данные отдельно, поведение отдельно. То (какие конструкции в него входят), я постарался собрать в отдельном разделе. Разделение кода на подпрограммы, во-первых, позволяет , а во-вторых, .

Идеология объектно-ориентированного программирования, как следует из самого названия, строится вокруг понятия объект. Объект объединяет в себе и данные и поведение. Объект – это любая сущность, с которой имеет дело программа, а именно: объекты предметной области, моделируемые программой; ресурсы операционной системы; сетевые протоколы и многое другое. По сути, объект – это та же , но дополненная процедурами и функциями, управляющими элементами этой структуры. К примеру, в процедурном языке программирования отдельно была бы создана переменная для хранения имени файла и отдельно – для хранения его дескриптора (уникальный идентификатор ресурса в операционной системе), а также ряд процедур работы с файлом: открыть файл, прочитать данные из файла и закрыть файл. Все бы эти процедуры, помимо обычных параметров и переменных для хранения результата, обязаны были бы принимать тот самый дескриптор, чтобы понять, о каком именно файле идет речь. В объектно-ориентированном языке для этих же целей был бы описан объект-файл, который также бы хранил внутри себя имя и дескриптор и предоставлял бы пользователю процедуры для открытия, чтения и закрытия себя самого (файла, ассоциированного с конкретным объектом). Разница была бы в том, что дескриптор был бы скрыт от остальной части программы, создавался бы в коде процедуры открытия файла и использовался бы неявно только самим объектом. Таким образом, пользователю объекта (программному коду внешней по отношению к объекту программы) не нужно было бы передавать дескриптор каждый раз в параметрах процедур. Объект – это комплект данных и методов работы с этими данными, часть из которых может быть скрыта от окружающего его мира, к которой и относятся детали реализации. Более подробно о терминологии объектно-ориентированного программирования будет рассказано далее.

Объектом в объектно-ориентированном языке программирования является практически все, за исключением операторов: и являются объектами, и описание ошибки является объектом и, наконец, основная программа также является объектом. Осталось понять, что такое объект с точки зрения самой программы, как он создается и используется. Вторым основополагающим понятием ООП является класс. Класс – это тот самый новый в сравнении с процедурным программированием тип данных, экземпляры которого и называются объектами. Класс, как уже было сказано, похож на составной тип данных или структуру, но дополненный процедурами и функциями (методами) для работы со своими данными. Теперь самое время описать основные термины объектно-ориентированного программирования.

Терминология объектно-ориентированного программирования

Перед тем, как перейти к описанию преимуществ, которые дает ООП разработчикам программного обеспечения в процессе , и программных продуктов необходимо познакомиться с наиболее часто встречающимися терминами в этом области.

Класс – тип данных, описывающий структуру и поведение объектов.

Объект – экземпляр класса.

Поле – элемент данных класса: переменная элементарного типа, структура или другой класс, являющийся частью класса.

Состояние объекта – набор текущих значений полей объекта.

Метод – процедура или функция, выполняющаяся в контексте объекта, для которого она вызывается. Методы могут изменять состояние текущего объекта или состояния объектов, передаваемых им в качества параметров.

Свойство – специальный вид методов, предназначенный для модификации отдельных полей объекта. Имена свойств обычно совпадают с именами соответствующих полей. Внешне работа со свойствами выглядит точно так же, как работа с полями структуры или класса, но на самом деле перед тем, как вернуть или присвоить новое значение полю может быть выполнен программный код, осуществляющий разного рода проверки, к примеру, проверку на допустимость нового значения.

Член класса – поля, методы и свойства класса.

Модификатор доступа – дополнительная характеристика членов класса, определяющая, имеется ли к ним доступ из внешней программы, или же они используются исключительно в границах класса и скрыты от окружающего мира. Модификаторы доступа разделяют все элементы класса на детали реализации и открытый или частично открытый интерфейс.

Конструктор – специальный метод, выполняемый сразу же после создания экземпляра класса. Конструктор инициализирует поля объекта – приводит объект в начальное состояние. Конструкторы могут быть как с параметрами, так и без. Конструктор без параметров называют конструктором по умолчанию, который может быть только один. Имя метода конструктора, чаще всего, совпадает с именем самого класса.

Деструктор – специальный метод, вызываемый средой исполнения программы в момент, когда объект удаляется из оперативной памяти. Деструктор используется в тех случаях, когда в состав класса входят ресурсы, требующие явного освобождения (файлы, соединения с базами данных, сетевые соединения и т.п.)

Интерфейс – набор методов и свойств объекта, находящихся в открытом доступе и призванных решать определенный круг задач, к примеру, интерфейс формирования графического представления объекта на экране или интерфейс сохранения состояния объекта в файле или базе данных.

Статический член – любой элемент класса, который может быть использован без создания соответствующего объекта. К примеру, если метод класса не использует ни одного поля, а работает исключительно с переданными ему параметрами, то ничто не мешает его использовать в контексте всего класса, не создавая отдельных его экземпляров. Константы в контексте класса обычно всегда являются статическими его членами.

На этом с терминологией ООП далеко еще не все, но остальные понятия, связанные с этой парадигмой будут рассмотрены в следующем разделе.

Преимущества объектно-ориентированного программирования

Теперь поговорим о свойствах, которые приобретает программа при использовании объектно-ориентированного подхода к ее проектированию и кодированию. Как мне кажется, большинство этих свойств являются преимуществами ООП, но есть на этот счет и другие мнения…

    Инкапсуляция обозначает сокрытие деталей реализации классов средствами награждения отдельных его членов соответствующими модификаторами доступа. Таким образом, вся функциональность объекта, нацеленная на взаимодействие с другими объектами программы группируется в открытый интерфейс, а детали тщательно скрываются внутри, что избавляет основной код бизнес-логики от ненужных ему вещей. Инкапсуляция повышает надежность работы программного кода, поскольку гарантирует, что определенные данные не могут быть изменены за пределами содержащего их класса.

    Наследование . Краеугольный камень ООП. В объектно-ориентированном программировании есть возможность наследовать структуру и поведение класса от другого класса. Класс, от которого наследуют, называется базовым или суперклассом, а класс, который получается вследствие наследования – производным или просто потомком. Любой класс может выступать как в роли суперкласса, так и в роли потомка. Связи наследования классов образуют иерархию классов. Множественным наследованием называют определение производного класса сразу от нескольких суперклассов. Не все объектно-ориентированные языки программирования поддерживают множественное наследование. Наследование – это эффективный способ выделения многократно используемых фрагментов кода, но у него есть и минусы, о которых будет рассказано далее.

    Абстрагирование . Возможность объединять классы в отдельные группы, выделяя общие, значимые для них всех характеристики (общие поля и общее поведение). Собственно, абстрагирование и есть следствие наследования: базовые классы не всегда имеют свою проекцию на объекты реального мира, а создаются исключительно с целью выделить общие черты целой группы объектов. К примеру, объект мебель – это базовое понятие для стола, стула и дивана, всех их объединяет то, что это движимое имущество, часть интерьера помещений, и они могут быть выполнены для дома или офиса, а также относиться к “эконом” или “премиум” классу. В ООП есть для этого отдельное понятие абстрактный класс – класс, объекты которого создавать запрещено, но можно использовать в качестве базового класса. Наследование и абстрагирование позволяют описывать структуры данных программы и связи между ними точно так же, как выглядят соответствующие им объекты в рассматриваемой .

    Пример диаграммы классов, построенной путем абстрагирования, в ходе анализа видов существующих транспортных средств приведен на следующем рисунке. На верхних уровнях иерархии наследования находятся абстрактные классы, объединяющие транспортные средства по наиболее значимым характеристикам.


    Диаграмма классов или иерархия наследования "Транспортные средства". Белые квадраты обозначают абстрактные классы.

    Полиморфизм . Еще одно свойство, которое является следствием наследования. Дело в том, что объектно-ориентированные языки программирования позволяют работать с набором объектов из одной иерархии точно так же, как если бы все они были объектами их базового класса. Если вернуться к примеру про мебель, то можно предположить, что в контексте создания информационной системы для мебельного магазина в базовый класс для всех видов мебели разумно добавить общий для всех метод “показать характеристики”. При распечатке характеристик всех видов товара программа бы без разбору для всех объектов вызывала бы этот метод, а каждый конкретный объект уже сам бы решал, какую информацию ему предоставлять. Как это реализуется: Во-первых, в базовом классе определяют общий для всех метод с общим для всех поведением. В случае с нашим примером это будет метод, печатающий общие для любых типов мебели параметры. Во-вторых, в каждом производном классе, где это необходимо, переопределяют базовый метод (добавляют метод с тем же именем), где расширяют базовое поведение своим, например, выводят характеристики, свойственные только конкретному виду мебельной продукции. Метод в базовом классе иногда вообще не обязан содержать какой-либо код, а необходим только для того, чтобы определить имя и набор параметров – сигнатуру метода. Такие методы называют абстрактными методами, а классы, их содержащие, автоматически становятся абстрактными классами. Итак, полиморфизм – это возможность единообразного общения с объектами разных классов через определенный интерфейс. Идеология полиморфизма гласит, что для общения с объектом вам не нужно знать его тип, а нужно знать, какой интерфейс он поддерживает.

    Интерфейс . В некоторых языках программирования (C#, Java) понятие интерфейса выделено явно - это не только открытые методы и свойства самого класса. Такие языки, как правило, не поддерживают множественного наследования и компенсируют это тем, что любой объект может иметь один базовый объект и реализовывать любое количество интерфейсов. Интерфейс в их интерпретации – это подобие абстрактного класса, содержащего только описание (сигнатуру) открытых методов и свойств. Реализация интерфейса ложится на плечи каждого класса, который собирается его поддерживать. Один и тот же интерфейс могут реализовывать классы абсолютно разных иерархий, что расширяет возможности полиморфизма. К примеру, интерфейс “сохранение/восстановление информации в базе данных” могли бы реализовывать как классы иерархии “мебель”, так и классы, связанные с оформлением заказов на изготовление мебели, а при нажатии на кнопку “сохранить” программа бы прошлась по всем объектами, запросила бы у них этот интерфейс и вызвала бы соответствующий метод.

Объектно-ориентированное программирование постоянно развивается, порождая новые парадигмы, такие как аспектно-ориентированное, субъектно-ориентированное и даже агентно-ориентиванное программирование. Нужно отметит, что лавры ООП не дают покоя остальным теоретикам, и они спешат предложить свои варианты его совершенствования и расширения. Про я написал отдельную заметку, а сейчас хочу пару слов сказать про прототипное программирование, которое реализует язык на стороне клиента JavaScript. Прототипное программирование исключает понятие класса, заменяя его прототипом – образцом объекта. Таким образом, в прототипно-ориентированном языке нет понятия типа объекта, а есть понятие образец или прототип. Прототип – это экземпляр объекта, по которому создаются другие экземпляры, копируя (клонируя) его члены. В JavaScript вы не описываете поля и методы класса, а создаете сначала пустой объект, а потом добавляете ему нужные поля и методы (в JavaScript метод можно определить и добавить к объекту динамически). Точно также создаются и прототипы, на которые потом ссылаются другие объекты, как на свой прообраз. Если у объекта не находится какого-то метода или поля, которое указано в месте вызовы, то оно ищется среди членов его прототипа. То, я также отдельно описал.

Некоторые элементы современного объектно-ориентированного программирования

Время не стоит на месте, да и времени с момента появления ООП уже прошло довольно много, поэтому не стоит удивляться, что сегодня словарь по объектно-ориентированному программированию серьезно разросся. Итак, вот некоторые новые термины и понятия, связанные с ООП.

    События . Специальный вид объектов, создаваемый для оповещения одних объектов о событиях, происходящих с другими объектами. В разных языках программирования механизм событий реализуется по-разному: где-то с помощью специальных синтаксических конструкции, а где-то силами базовых средств ООП.

    Универсальный тип . Концепция универсальных типов не связана непосредственно с концепцией ООП, но она является причиной появление таких элементов, как универсальный класс, универсальный метод, универсальное событие и т.д. Универсальный тип – это тип, параметризованный другим типом (набором типов). Кем является этот тип-параметр в контексте проектирования универсального типа неизвестно, хотя есть возможность ограничить значения типов-параметров, заставив их быть производными от конкретного класса или реализовывать определенные интерфейсы. В качестве примера можно привести универсальный класс сортировки последовательности элементов, где тип элемента в последовательности заранее неизвестен. При проектировании такого класса важно указать, что тип-параметр должен поддерживать операцию сравнения. При создании объектов универсальных типов параметр указывается явно, например целочисленный или строковый тип, а сам объект начинает себя вести так, как если бы это был экземпляр класса, созданный специально для сортировки целых чисел или строк.

    Исключения . Еще один специальный вид объектов, поддерживаемый встроенным в конкретный язык программирования механизмом обработки ошибок и исключительных ситуаций. Исключения, помимо кода ошибки, содержат ее описание, возможные причины возникновения и стек вызовов методов, имевший место до момента возникновения исключения в программе.

Недостатки объектно-ориентированного программирования

Про то, что популярность объектно-ориентированного подхода к огромна я уже сказал. Про то, что тех, кто стремится расширить эту парадигму довольно много, я тоже уже отметил. Но есть еще один способ выделиться среди огромного сообщества специалистов в информационных технологиях – это заявить, что ООП себя не оправдало, что это не панацея, а, скорее, плацебо. Есть среди этих людей действительно специалисты очень высокого класса, такие как , Александр Степанов, Эдсгер Дейкстра и другие, и их мнение заслуживает внимания, но есть и те, про которых говорят, что “плохому танцору всегда что-то мешает”. Вот они, наиболее очевидные недостатки ООП, на которые указывают специалисты:

    ООП порождает огромные иерархии классов, что приводит к тому, что функциональность расползается или, как говорят, размывается по базовым и производным членам класса, и отследить логику работы того или иного метода становится сложно.

    В некоторых языках все данные являются объектами, в том числе и элементарные типы, а это не может не приводить к дополнительным расходам памяти и процессорного времени.

    Также, на скорости выполнения программ может неблагоприятно сказаться реализация полиморфизма, которая основана на механизмах позднего связывания вызова метода с конкретной его реализацией в одном из производных классов.

Загрузка...